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A description is given of a special-purpose computer for the study of static and dynamic 

properties of stochastic Ising-like systems of up to 4 x 10” spins. Elementary Monte Carlo 
steps are executed in the machine at a rate of 1.5 MHz. The first results are given, obtained as 

part of a testing procedure of the machine. 

1. INTR~D~JCTI~N 

In statistical mechanics, the calculation of static and dynamic properties of Ising 
systems by means of the Monte Carlo method is today a standard technique ] l-4 ]. 
The accuracy of the method depends strongly on the range of system sizes that one 
can study and on the size of the statistical sample drawn through the Monte Carlo 
process from the relevant part of the configuration space for the system. This is 
dramatically true in the critical region, where correlation distances and correlation 
times are very long. Therefore, the large amount of computing time necessary to 
obtain accurate results on a general-purpose computer constitutes a practical 
limitation of the method. 

The speed of the calculation can be greatly increased when the most time- 
consuming part is carried out in a special-purpose processor dedicated to that task. 
Ising systems, the configurations of which have a completely binary nature. are 
ideally suited for such a machine. This report describes the processor built by one of 
us (A.H.) for the generation, by means of the Monte Carlo method, of a long 
sequence of configurations of Ising spin systems; the first results obtained with this 
machine are included. 

It should be mentioned here that recently a similar machine for the Ising model 
was constructed by Pearson et al. [ .5] in Santa Barbara (California). A rather 
different special-purpose processor, not for Ising systems but for the simulation of 
fluid systems by means of the molecular-dynamics method, has recently been 
constructed by Bakker et al. [6] of our laboratory. The appearance of these machines 
is of course due to the present availability of medium- and large-scale integrated 
circuits, in particular of high-density and high-speed memory chips at a low cost per 
bit. With these machines, a much greater calculational efficiency can be obtained at a 
lower price than with general-purpose computers. 
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In Section 2 of this paper the class of Ising systems will be described for which our 
processor was designed. The general hardware structure of the machine is the subject 
of Section 3; some technical details are given in Section 4. The random number gener- 
ator employed and its hardware realization are described in Section 5. Finally, 
Section 6 contains the first results produced by the machine as part of a general 
testing procedure. 

2. SCOPE OF THE PROCESSOR 

The design of a special-purpose processor is a compromise between flexibility with 
respect to the problem studied on one hand, and the simplicity and cost of the 
machine on the other hand. We wanted to study the stochastic Ising model for 
different lattices in two and three dimensions with the inclusion of next-nearest 
neighbour interactions, and with a number of spins considerably larger than is 
usually possible with software Monte Carlo programs. The design of the machine was 
developed with these very general requirements in mind. 

The class of Ising systems that the completed processor can deal with can be 
described (not exhaustively, though) by the following Hamiltonian: 

N 

H = B L‘ si + K, x sisJ + K, 2 sisi 
LTI nn ““” 

+K,x sisjs, + K, x s,s,sAs/* (1) 
tr sq 

Here, si = fl is the Ising spin variable, N the total number of spins, and B the 
external magnetic field. The second term takes the interactions between nearest 
neighbour (nn) spins on the lattice into account, K, being the coupling constant. The 
third term, with coupling constant K,, contains the hext-nearest neighbour (mm) 
interactions. These first three terms can be present for all four lattice types that can 
be studied by our processor: 2-D triangular, 2-D square, 3-D simple cubic, and 3-D 
face-centred cubic. The fourth term, with coupling constant K,, can be present only 
when the 2-D triangular lattice is studied; it contains the three-spin interactions of 
each triangular “plaquette,” i.e., of each elementary triangle of that lattice. The last 
term, with coupling constant K,, can only be included when the 2-D square lattice is 
studied, and contains the four-spin interactions of each square “plaquette” on that 
lattice, i.e., the products of the spin values of spins i, j. k, and I located at the four 
corners of each elementary square of that lattice. 

The largest value of N that the spin configuration memory of the machine can cope 
with is N = 222. Due to the particular organization of the spin memory, necessary for 
an efficient determination of the local configuration surrounding the spin that is 
subjected to the Monte Carlo process (the “central spin”), not all system sizes below 
N = 222 can be simulated (the “local configuration” contains all spins that interact. 
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through K, , K,, K,, and/or K,, with the central spin). The system sizes that can be 
studied are 

N= 2k x 2’, 3 < k, I < 11 (in 2 dimensions), (2) 

N=2k~2’~2m, 2 ,< k, 1, m < 7 (in 3 dimensions). (3) 

The boundary conditions adopted in the machine are periodic, of the toroidal type 
(no helical shifts). 

The above description of the scope of the machine is not completely exhaustive. 
Instead of the terms with K,, K,, and K, in Eq. (l), other types of interactions could 
also be taken into account, such as those leading to the so-called ANNNI 
(Anisotropic Next-Nearest Neighbour Ising) models [7]. Also, instead of B a 
staggered external magnetic field B,, could be introduced. The main restriction of the 
machine is that the number of spins in the local configuration with which a given spin 
is interacting does not exceed 30. 

3. GENERAL HARDWARE STRUCTURE 

The processor is a bus-oriented system, the functional organization of which is 
depicted in Fig. 1. This diagram is a simplified representation of the actual hardware 
and it just shows what information is processed in which part of the machine. In 
terms of this diagram we will now describe how the Monte Carlo simulation takes 
place in the machine; the technical details will be discussed later. 

The heart of the machine is the spin memory, with a capacity of 2” bits, in which 
the momentary spin configuration of the Ising system is stored. At the start of the 

-s- 
INTERACTION SUMS UPDATING 

FIG. 1. The functional organisation of the Delft Monte Carlo processor for Ismg systems. 
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Monte Carlo calculation the memory is loaded with an initial con~guration (at free 
choice) by means of the Hi-1~0 minicomputer. Then the address generator selects a 
certain spin site. The selection of this “central” spin takes place either in a fixed 
sequence or in a random fashion, using the same random number generator as 
employed in the MC process itself. The address of this site is passed on to the 
neighbour determination section, which (before the calculation was started) was 
programmed to generate the addresses of all spins of the “local configuration” that 
interact through one of the desired couplings with the “central” spin. The collection 
of these addresses is then forwarded to the spin memory, which as a result produces 
the collection of the spin values at these addresses. The simultaneous production of 
these spin values was made possible by a special organization of the spin memory: 
this organization constituted a major design probfem and will be discussed later. The 
collection of the spin values of the local con~guration surrounding the central spin 
deftnes an address of the look-up table; at this address the value p+ ,/(p + + p ) has 
been stored beforehand, depending on the lattice structure and the interactions that 
one wants to study. Here, the quantity P+ is the Boltzmann factor associated with the 
local configuration when the central spin is up, and p- the Boltzmann factor of the 
same local configuration but with the central spin down. (There is a certain 
degeneracy here: not all different local configurations have different energies. This is 
used to reduce the number of entries in the look-up table, by preprocessing the 
collection of spin values of the local configuration to some extent, i.e., by making use 
of the local combinatorics). 

The value p + /(p+ +p_> produced by the look-up table is now compared, in the 
comparator, with the last random number R produced by the random number 
generator (RNG); the constructional details and the properties of the RNG are given 
in Section 5. When R <p+/(p+ +p-) holds, the new value of the central spin is set 
equal to +l (“up“)? otherwise it is set equal to -1 (“down”). Whenever the new value 
of the central spin differs from the old one, the necessary change in the spin memory 
is made, and the interaction sums (the relevant sums of Eq. (1)) are updated. This 
particular Monte Carlo procedure is completely standard, and was used originally by 
Yang 181; his recipe obeys detailed balance and guarantees that the system relaxes to 
thermodynamic equilibrium. As an alternative, Fosdick’s MC procedure 19 / could be 
realised by changing the contents of the look-up table. 

4. TECHNICAL DETAILS 

The technical realisation of the 4M bits random-access spin memory (the S-RAM) 
and its interwoven relation with the neighbour-determination section will now be 
described. On one hand, the Ising spin lattice is thought to be subdivided into a 
square or cubic array of cells of 64 spins each; for 2-D lattices each cell is a square 
block of 8 X 8 spins, for 3-D lattices it is a block of 4 x 4 x 4 spins. On the other 
hand, the S-RAM is in reality subdivided in 64 separate memory banks, each 
organized as a 64K x 1 RAM. 
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Equivalent positions within different cells of the lattice will never appear in the 
same local con~guration (usually consisting of nearest and next-nearest neighbours 
only), therefore their addresses can be located on the same memory bank. The 
requirement that all spin values of the local configuration can be determined 
simultaneously can now be met if the information stored in different memory banks 
can be read in a parallel manner. The chosen cell size (i.e.. the number of separate 
memory banks) is simply the smallest integer number that is both square and cubic: 
it is also larger, as it should be, than the largest number of spins in the local 
configurations that we wish to consider. For Ising systems smaller than the maximum 
size N = 222, not all the space available on any one memory bank will be used; the 
limitation to the system sizes of Eqs. (2) and (3) guarantees that all memory banks 
will always be used, which is a simplifying feature. 

All 64 memory banks are connected with the 22-bit wide A-bus and the 3 l-bit 
wide S-bus (see Fig. 2). The A-bus carries the address of the central spin that has to 
be processed. The S-bus is used to route the spin values of the local configuration to 
the look-up table on lines that depend exclusively on the position of these spins with 
regard to the central spin. 

Of the address, 16 bits are used to select the cell in which the central spin resides. 
The other 6 bits provide the address of the central spin within that cell. These 6 bits 
are connected to identification and decoding circuitry, identical on each of the 64 
memory banks. This identification and decoding circuitry activates only those 
memory banks that contain a spin of the local configuration and routes the values of 
these spins to the selected lines of the S-bus. When the central spin has a position 

22 A-BUS 

31 S-BUS 

FIG. 2. One of the 64 identical parts of the spin memory, each with its own netghbour IdentCicatton 
and decoding section. 
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close to a cell boundary, some of the spins of the local configuration may be part of 
neighbouring cells. On memory banks that contain such spins, the 16-bit cell address 
is corrected. The actual decoding is performed by means of look-up tables that are 
loaded in the initialisation phase of the MC calculations, according to the particular 
lattice structure and depending on the particular memory bank that it is attached to. 

By means of masking certain higher order bits of the possibly corrected 16.bit cell 
address, periodic boundary conditions can be maintained for lattice sizes down to 
8x8or4x4x4. 

The width of the data bus, 31 bits, is larger than is necessary as long as one 
restricts oneself to Ising systems defined by the Hamiltonian of Eq. (I). The largest 
number of data bus lines used for these systems is 19 (including a line for the central 
spin), which occurs for the S.C. lattice (with 6 n.n. and 12 n.n.n.) and for the f.c.c. 
lattice (with 12 n.n. and 6 n.n.n.). It is not feasible to use 19 bits directly as an 
address for the look-up table, which then would have far too many entries. However. 
as far as the energy stored in the local con~guration depends only on the number of 
+ spins on the n-n. and n.n.n. positions, the number of bits needed can be reduced 
considerably. By inspection of all possible cases, including the 2-D cases with 
multiple-spin interactions, one finds that 10 bits (corresponding to 1K look-up table 
entries) are sufficient. The actual counting procedure to reduce the original I9 bits to 
10 is eliminated by the use of programmable read-only memories (PROMS). 

The look-up table contains eight IK x 4 static RAMS, thus offering a precision of 
32 bits for the values of p+/(p+ +p-). This precision is more than sufficient. 

The calculational speed of the machine is largely determined by the access time of 
the S-RAM elements, which is 250 nsec; faster low-power elements were not readily 
available at the time that the printed circuit boards of our processor were assembled. 
The resulting speed of the machine is about 650nsec per elementary Monte Carlo 
step. With the faster elements available today a pipelined structure of the machine 
would have made sense and would then have increased the speed of the processor by 
a factor of 5 to 10. 

5. THE RANDOM NUMBER GENERATOR 

The random number generator (RNG) to be employed should produce numbers 
with a precision of 32 bits (identical to the precision of the look-up table), uniformly 
distributed on the interval [0, l), and without correlations. The RNG must be easily 
realizable in hardware and sufficiently fast. The RNG must be deterministic. such 
that the sequences of random numbers produced are reproducible, in order to 
facilitate testing procedures of the RNG and of the processor as a whole, and aiso to 
enable one, in a later stage, to repeat the same Monte Carlo experiment in a closer 
study. A deterministic finite state machine can only produce a sequence with a finite 
period; this period must not be exhausted in the Monte Carlo experiments that one 
wishes to perform. 

Most of these requirements can be met by adopting as the RNG a two-bit feedback 
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shift register that produces a maximum-length sequence. The use of the general linear 
feedback shift register as an RNG was studied by Tausworthe [IO], and the special 
case of a two-bit feedback register was studied by a number of authors, e.g., Zierler 
] 111, Tootill et al. [ 121, and Kirkpatrick and Stoll ] 13 ]. It was shown by Tausworthe 
that these feedback shift registers. under rather general conditions, indeed produce 
random numbers that are uniformly distributed, and that show no pair-correlation 
whatsoever: the multiple-correlation behaviour and in particular the so-called run- 
performance is somewhat less satisfactory in general. 

In Fig. 3 a general two-bit feedback shift register of p bits to generate a random 
number of L bits is depicted. From the initial state of the shift register, a sequence of 
p bits, the next state is produced by inserting the module-2 sum of the feedback bits 
in positions 4 and p into position 1; in the shift register, the original bit in position 1 
is then shifted into position 2. and so on up to position p, the original contents of 
which is lost. If all bits are zero in the initial state, the register will remain in that 
state forever; if the register progresses through all other 2p - I states before repeating 
itself, it produces a maximum-length sequence. After L shifts. the contents of the L 
positions used to generate the random number is completely refreshed and the next 
random number can be read out. 

Zierler [ 1 1 ] lists values for p and LJ that lead to maximum-length sequences; from 
that list we selected p = 127 and 9 = 15 (in practice, we take the complementary 
value q = 112, which however is equivalent: the only difference is that the sequence 
of states of the shift register is reversed). The value p = 127 was chosen since it is 
considerably larger (as it should be, according to Tausworthe ] IO]) than the number 
of bits of the random number that we want to use, L = 32, which is large enough for 
the precision desired and which is compatible with the HP-IO00 computer system. 
Also, the period 2’“’ - 1 is not by far exhausted in a Monte Carlo experiment of 
several days in which random numbers (as in our processor) are needed with a 
frequency of 1.5 MHz. The value q = 15 (or rather 112) was adopted since it seems 
to lead to an acceptable run-performance, according to arguments given by Tootill et 
al. [ 121; further statistical tests are being performed by us for this particular RNG. 

Because of the desired speed of the RNG the actual design differs from the simple 
configuration of Fig. 3. Instead, the configuration of Fig. 4 was used, which consists 
of 16 chips, each being an g-bit shift register. 

The result of a single shift in each of these registers, including the 16 feedbacks 
indicated in Fig. 4, is equivalent to 16 shifts of the original two-bit feedback shift 
register of 127 bits length. After two steps in the new con~guration the 32 bits of the 

L-bit random number 

m 

FIG. 3. A general two-btt feedback shift register. 
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FIG. 4. Actual realization of the single two-bit feedback shift register with p = Ii 7 and q = 112 in 
terms of 16 parallel shift registers of 8 bits each (the Last bit of the last regtster is not used): the resulting 
more complicated feedback scheme is indicated. 

random number (which in practice are read from positions 96 through 127) are 
completely refreshed, and the random number (produced now at a speed that is 16 
times faster) is ready for use. 

6. TESTING PROCEDURES AND RESULTS 

During the design phase of the machine several parts were constructed in prototype 
in order to check their behaviour. This was followed by the construction of 32 iden- 
tical printed circuit boards, each containing a combination of two memory banks 
with their own neighbour-determination circuitry. The other sections of the machine, 
each occupying a single board or part thereof, were wire wrapped. 

The first main testing procedure was carried out when all boards were mounted 
and the machine was put together. All memories involved in the different sections are 
accessible both for loading and reading; this enables one to load them and subse- 
quently to check whether the right information is stored at the right place (these test 
procedures are in fact incorporated in the initialisation phase for each MC 
calculation). For instance, when the look-up table and/or the RNG is loaded with 
special values (e.g., zeros only), the result of a single sweep through the lattice is 
particularly simple in terms of the initial con~guration. In this way, one is able to 
check the addressing in the spin memory as well as the functioning of the updating 
section. For the largest systems possible and for the four different lattice structures, 
the correct functioning of the neighbour-determination section defining the local 
configuration was checked by comparing the actual spin configuration with the infor- 
mation transported in the 31-bit data bus to the look-up table. The dynamical 
behaviour of the machine was tested at normal speed by means of a logic analyzer. In 
these tests it was found that about 1% of the integrated circuits used had to be 
replaced. 

The second main testing procedure consisted of a detailed comparison between 
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(relatively short) MC calculations of the completed processor and MC calculations 
with a software simulation of the processor, This software simulation copied the 
intended functioning of the machine in every detail, including the look-up table and 
the RNG in particular. The software simulation is in principle a completely 
independent MC programme (though due to its particular requirements a very inef- 
ficient one). Initializing both the machine and its software simulation with the same 
start configuration and the same state of the RNG. we found that after 100,000 MC 
steps (this number is determined by the slowness of the software simulation) exactly 
the same configuration and the same collection of interaction sums were produced by 
the machine and its simulation. 

The third main testing procedure of the processor is a comparison between its 
results and exact values. Therefore, the 2-D square Ising lattice in zero fiefd with 
nearest neighbour interactions was studied. For this case, exact formulas based on the 
Onsager solution for the energy and the specific heat have been given by Ferdinand 
and Fisher [ 141 for a number of different lattice sizes, using strictly toroidal periodic 
boundary conditions, The numerical values derived from these formulas are 
compared with the MC results of our processor in Table I, which lists for different 
system sizes and for different temperatures around the critical temperature the exact 

TABLE I 

The MC Results for the Internai Energy and the Specific Heat per Spin Compared with the Exact 
Values for Different Temperatures and for Different Sizes of the 2-D Sq. king System with n.n. 

Interactions 

N kT 
~-- 

16 x 16 1.80 
2.00 
2.20 
2.40 
2.60 

32 x 32 1.80 
2.00 
2.20 
2.40 
2.60 

64 x 64 1.80 
2.00 
2.20 
2.40 
2.60 

U/NkT 

MC exact 
____.__.-.___-..--~ 

-1.0330(l) -1.0330 
-0.8729(i) --0.8728 
-0.7049( 1) -0.7046 
-0.5232(2) -0.5229 
-0.3999( I ) -0.3997 

-1.03302(3) - 1.03295 0.438( I ) 0.439 
-0.8730( 1) -0.8728 0.723(2) 0.125 
-0.7034( 1) --0.7030 1.390(5) 1.401 
-0.5055( 1) ---OS053 1.286(4) 1.284 
-0.3958( 1) -0.3956 0.708( 1) 0.708 

-1.03297(2) --I 1.03295 
-0.87282(2) -0.87278 
-0.7031(l) -0.7030 
-0.50186(4) --OS0176 
-0.39553( 1) -0.39550 

.- 

CINX- 

MC exact 

0.439( 1) 0.439 
0.723(2) 0.726 
1.288(4) 1.291 
1.406(4) I.408 
0.801(2) 0.799 

0.439( 1) 0.439 
0.721(l) 0.725 
1.409(4) 1.415 
1.136(3) 1.134 
0.706( 1) 0.705 

Note. The figures between parentheses give the standard deviation. e.g., -0.7049( 1) stands for 
-0.7049 f o.ooo1. 
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values of the internal energy per spin U/~kT, the specific heat per spin C/~k, and the 
corresponding MC results of our processor. 

The MC results (including their standard deviations) were obtained from 20 series 
of 25,000 observations of the number N, _ of opposite n.n. pairs on the lattice, taken 
at “time” intervals of 32 MCS/spin (elementary MC steps per spin). From these data 
the energy and the specific heat can be calculated. In the same series of observations 
the magnetization and the susceptibility as well as the distribution for the energy and 
magnetization are obtained. For a direct comparison with exact results the energy 
and the specific heat are most suitable. 

All temperatures in Table I are around the critical temperature T,, where the 
comparison is most sensitive. Outside the critical region the MC results agree with 
the exact values within the standard deviation. In the critical region, although the 
absolute accuracy of our results is satisfactory, as is apparent from the table, the 
difference between the calculated and the exact values tends to be larger than the 
calculated standard deviations. This cannot be attributed to the possibility that the 
observations are not truly independent. Although in the critical region a number of 
32 MCS/spin may not be large enough, the standard deviatioans were calculated 
from the 20 partial results, each containing 25,000 observations. These partial results 
can be considered to be independent. 

Therefore, the discrepancy found must probably be ascribed to the RNG 
employed, as indicated by tests of its run performance. ’ It should be noted that the 
very extensive MC calculations carried out in the processor at a rate of 1.5 MHz are 
a very severe test for any RNG. 

Pending a solution of this problem, we consider our processor to be a very efficient 
means of performing MC experiments on Ising systems. 
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